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Hebbian learning in the agglomeration of conducting particles
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The Hebbian learning rule is a fundamental concept in the learning of a neuronal net, where a frequently
used connection of two neurons is continually reinforced. We study the properties of self-assembling connec-
tions of conducting particles in a dielectric liquid, and find that the strength of the connection between different
electrodes represents a memory for the history of the system. Optimal parameters and sequences of stimulation
for effective training are determined. We discuss a future application of our results for the implementation of
a nonvolatile neuronal network based on self-assembling nanowires on a semiconductor surface.
[S1063-651%99)03603-X]

PACS numbeps): 81.10.Dn, 45.05tx, 05.70.Ln, 84.32-y

Hebb describes the strengthening of neuronal connections In the experimentFig. 1) N spherical steel particlega-
as a mechanism for learning in the human bifdir3]. The  dius p=1.0 mm, masan=33.0 mg) are distributed ran-
more a connection between neurons in the dendritic structurgéomly in a cylindrical cell at a constant concentration of
of axons is used, the stronger is this connection in the futureparticles per area(;p=2.5/cn?. The cell is filled with castor
This process is known as Hebbian learning and is frequentlyj| (viscosity: =5.68 Pas) to a heiglit=3 mm. The oil
used in neuronal networks. L has a high dielectric constas;~4.7 and a small electrical
Dendritic structures are well studied in crystal grovh conductivity oo;<10"12 (Om)~%. The tips of the elec-

3-r]1fd (_:anl_be_t edxplained ti_n ntSEAr)elart]ively simplg mOdellk()ftrodesS, A, andB touch the bottom of the cell and form the
iusion-imited aggregato wherein a random walk - 5416 g— , ASB A and B lie at a radial distance of
models the Brownian motion of the particles that aggregate

to clusters[5-7]. In a system of self-assembling metallic =3 cm on acircle center(_ed at electroﬁe_

particles in an electric field the dynamics is governed by . AF the start of the experiment, the partlcles_ are at rest and
electromagnetic interactions and yields self-organizing fracdistributed randomly. A voltage of 19.5 kV is applied be-
tal patterns when a large flux of electric current and a higfween the electrodeS and A for time T,. Thereafter, the
frictional force are preseriB]. The fractal dimension of the Voltage is switched td and B for Tg. This procedure is
emerging patterns was determined for different geometries depeated five times as shown in Fig. 2. A typical initial dis-
the electrode§9—11]. In contrast to DLA-grown structures, tribution of the particles is shown in Fig(s.

these dendritic patterns self-repair after small perturbations. The dynamics of a single particle gtin the electric field
This property leads to the hypothesis of the principle ofis described12] by a force,

minimum resistance in dendritic patterig.

In experiments with a pair of electrodes across which a € _
voltage is applied, steel spheres initially dispersed in the vi- F=—> L"Iizer_Rij =6mnpl;, 1)
cinity of these electrodes are drawn together by the electric 171 200 !
field to form connected, conductive wires. It has been proven
analytically that this agglomeration process minimizes thedependent on the currerlts and resistanceR;; between the
resistance of such a systdit2]. Therefore, these wires are particles atr; andr;. Inertial forces are small compared to
stable. the friction and are therefore neglected. The total resistance

In our experimentFig. 1) three point-electrodes are used can then be written as a Lyapunov function, and the resulting
to induce time-dependent boundary conditions upon the cydynamics minimizes the total resistance of the sydte?hin
lindrical cell. A voltage is applied between only two elec- reaching a stationary state. The resistance drops to zero if a
trodes at any given time. Although the electric field, which
drives the wire formation exists for only one electrode pair at 195 kV
a time, after alternating several times the pair to which the i|||||||
voltage is applied, it is found that separate wires can exist for d A
each pair. The electric field that constructs a wire between S
one pair simultaneously acts to destroy or pull in the wire of
the other pair. We find that a wire consists of more particles . % 0
if the corresponding electrodes induce an electric field more . T
often or for a longer period of time.

The strength of a connection, i.e., the number of particles F|G. 1. Experimental setup. Spherical steel particles are distrib-
between the electrodes, depends on the usage and thus reged randomly at a densi@,=2.5/cnt in a cylindrical cell filled
resents a memory of the history of the system in the sense efith castor oil. The voltage of 19.5 kV is applied®& A andB
Hebbian learning. are connected alternately.
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time #(s) FIG. 4. Relative strengths/,s and wgg after each step at
=3 cm, #=60°, C,=2.5/cnf, r=0.67. The typical dynamics

FIG. 2. Applied voltage as a function of time. The voltage of of the relative strength of connectioAsS and B-S exhibits a sta-
U,=19.5 kV is applied to connectioA-S for T, (here Tp tionary state after a few steps.

=10 s). Subsequently, electrodds disconnected and the voltage
is applied to electrod® (Ug=19.5 kV) for Tg=5 s. The volt-
age is switched fromA to B and vice versa five times. This se- Wps=o————.
quence constitutes ten changes in boundary conditions, numbered 1 Na+tNg
through 10.

Ne )

A typical evolution of these strengths is plotted in Fig. 4.

complete wire forms. The average time for the formation ofA stationary state is achieved after several steps.
a complete wire iS,~200 s at an electrode separation dis- The periods for the application of the voltage are also
tanced=3 cm. normalized, yielding the stimulation ratia=Ta/(Ta

In our experiment such a stationary state is not reachee-Tg). T, is varied, wherea3z=5 s remains the same.
because the boundary conditions are modified before a wire w,g is measured for different ratiasand anglesd. To
is completedFig. 2). The time interval before switching the quantify the stability of the connections, we take the average
current to the other electrode never exceeds 0125 over the last two steps of each series and define the average

The number of particledl, and Ng betweenS and the  strengthw,g of the connectiorA-S after 10 steps in Eq4).
electrodesA or B are determined as indicated in Figbg

All particles along theA-S axis with centers inside the plot- —  Wag(n=9)+wag(n=10)

ted arcs, which enclose this axis, are countedNgr simi- Was™ 2 . )
larly for Ng. These two curved regions have a maximum

width of 4 mm at their centers. The results showsee Fig. 5 that the mean value faw,g

The connection between one pair of electrodes is considncreases with the stimulation ratiat a given angl@ of the

ered to be stronger than the connection between the othef, +.o4es. Al values for the average strengths are sig-
pair if the number of particles in the described area is largehificantly h.igher than 0.5 for=0.6. The system of agglom-

in the fqrmer than in the latter. In Fig(t3, No>Ng. The erating particles in all cases exhibits Hebbian learning.
connectionA-S is stronger tharB-S, although voltage was The error bars reveal the maximum and minimum values

last applied to the connectid®-S. f Wae for the fi ¢ df HTh
For further discussion\, andNg are normalized in Eq. ©F Was for the five sequences performed for eachThe

(2) and Eq.(3) to yield was andwgg, the relative strengths deviations of the strengthe/,s from the mean value are
of the connections significantly smaller forr=0.75 (Tp,=15 s, Tg=5 s)

than the deviations for both higher and lower values. ¢for
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FIG. 3. Initially the particles are distributed random{g). The stimulation ratio r
positions of the electrodes A, andB are indicated by the arrows. _ _ _ _
Axis A-S and axisB-S form the anglef (here9=60°). Picture(b) FIG. 5. Average strengtilwv,s as a function of the stimulation

shows the distribution of the particles after step 8 and the area use@tio r at C,=2.5/cnf, §=60°. The mean strength of connection
to determine the number of particles for each connection. AlthougtA-S increases withr. The deviations ofv,g from the mean value
step 8 used connectid@:S, there are still more particles on the axis are smaller in the vicinity ofr =0.75, whereT,=15 s andTg
A-S: Na=14,Ng=10,d=3 cm, §=60°, C,=2.5/cnf, r=0.67. =5 s.
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FIG. 6. The average strengih, g of the connectiorA-S versus FIG. 7. Relative strengths/,s and wgs after each step at
angle# atd=3 cm, r=0.75, Cp=2.5/cm?. In the vicinity of 6 =3 cm, #=30°, r=0.67, Cp:2.5/cn?. The electroded andB
=60° the deviations ofv,s from the mean value are significantly are close to each other; hence the wire that takes several voltages
smaller than for other angles. steps to form at electrod® subsequently oscillates betwearand

the figure’s lower values, both connections exist for nearly B.

the same time and compete for the particles. If one CONNEGy aach other than t&, as they are forg=30°, and the
tion is slightly stronger during the first steps in the VOltageosciIIations described above are hence less '

series, the currents; in Eqg. (1) are higher and the resulting Also, if the voltage is applied ta-S, at0=66° the forces

oroes 1 I parlces I e ety of e cornecton $Eon e paricies i th vty of he S are higher tar
ger. for larger angles. The changes induced in the wires and sur-

Iarggr impact on the resulting strength. ."T‘Gfo'5 both.con- rounding free particles along thH&-S axis when the voltage
nections are used for exactly the same timeMBENa IS @S o0 hlied t0A-S, or along theA-S axis when the voltage is
likely asNa>Ng. The average strengii,s varies consid-  gppjlied toB-S, are greater than fof>60°. In other words,
erably although the mean value is 0.5 in Fig 5. at #=60° the cyclical application of these larger forces mini-
Higherr values yield a nearly complete wire betwen  mjzes the effects of random initial conditions more effec-
and S. After the voltage switches tB, not only single par- tively than at higher angles.
ticles, but the entird\-S wire, particularly its end closest to In conclusion we have shown that Hebbian learning is
A, moves toward thé8-S axis. A long wire can be more possible in a system of agglomerating particles in an electric
mobile than either a short one or many isolated particles. Ifie|d. Sequential changes in the boundary conditions can be
particular, an efficient way to obtain a high average strengthwterpreted as stimulation or training of the system, because
Wus With only small deviations from the mean value is to information about these changes is still present in the system
avoid a stimulation ratio for which~1. after the electric field is removed. The effect of training is
A comparison of the average Strengmﬁs for which ¢ is found to be most stable near=0.75 andd=60°. For these

the lone independent variable shoygee Fig. 6 a similar  values the average strength s of the resulting connection is
variation in error bar length. For large angles both connecvery reproducible. For higher and lower valuesgodr r, the
tions can develop rather independently andwhg can have ~ resulting strengths of the connections vary more widely.
large deviations from the mean value whs, since small The process of thermal hopping of metal atoms on a semi-
variations in the initial distribution of the spheres determineconductor surface has similar dynamics when an electric
the subsequent strength of each connection. At small angidé!d 1S applied. The hopping probability is enhanced in the

6 the connecting wire tends to oscillate between the tw irection along the electric field. Numerical calculations
electrodes show the formation of nanowires for Au atoms on a Si sur-

The percent of change, which this oscillation produces i2c€ between two electrodes at room temperafli. The

the connection strength, is significant for both low and, esdynamics of the Au atoms between three or more electrodes

pecially, high values of. Figure 7 shows the evolution of with changing boundary conditions should yield structures
Ws andwgs for r=0.67 andf=30°. Because the compet- similar to those investigated in this paper. Therefore, the

ing electrodesA andB are closer to each other than to elec-
trode S the effective counterelectrode in this case is the end
of the oscillating wire rather tha The particles in the wire
originating from electrodéS in Fig. 8 contribute towgg in
step 8 and step 1{Fig. 8@ and Fig. &c)], but the same
particles contribute tav,gin step 9[Fig. 8b)]. The result is

a smaller average strengiy s.
Figure 7 is for#=30° andr=0.67. For#=30° andr
=0.75, the wi ill | i in Fig. 6.
0.75, 1 et Wl_re oscillates less, asid(?plcted_ln ig. 6 FIG. 8. (a) Step 8,(b) step 9, andc) step 10 from the dynamics
In the vicinity of §=60° the deviations oW,s from the  ghown in Fig. 7 atd=3 cm, 6=30°, r=0.67 Cp:2.5/cn?.

mean value of/_vAS are small compared to the deviations for The wire originating from electrod& switches fromB to A and
either higher or lowep. At #=60°, A andB are not closer back and contributes t,s andwgg alternately.

(b) (©)
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implementation of a neuronal network on a Si surface wouldactive electronic devices represent the weiglit8]. This

be possible at a suitable range of parameters. implementation comes with the drawback of losing informa-
The main advantage of this approach for the implementation when the device is turned off. In contrast to that, a

tion of a Hopfield network on a semiconductor chip as pro-device based on self-assembling nanowires is nonvolatile in

posed in[14,15 would be a relatively easy method to pro- the sense that information once stored in the weights of the

duce and change the desired high-resistance connectiongnnections is still present, even if the device is turned off.
which are difficult to produce in standard complementary

metal oxide semiconduct¢EMOS) technology[16,17. The This work was supported by the U.S. ONR under Grant
network could also be retrained during the operation of suctNo. N00014-96-1-0335 and DARPA under Grant No.
a device. Retraining is currently possible in networks wheréN00014-95-1000.
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